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HIGH TEMPERATURE RADIATION CALORINiETEC 

Introduction 

It was the purpose of this research to investigate 
theoretically and experimentally the factors which are 
involved in direct caloriraetry at high temperatures. 

In particular, it was our purpose to study the operational 
characteristics of a spherically symmetrical calorimeter 
operating in a deep vacuum. The principle mode of heat 
transfer for such a calorimeter is radiation. 

There are numerous uses for a calorimeter for making 
direct measurements at high temperatures. Studies u£ 
solid phase transformations and heat capacities of metastable 
phases are good examples where direct caloriraetry is superior 
to the various indirect methods. 

This report describes a spherically symmetrical 
calorimeter which was constructed. The experimental 
results are discussed in relation to the theory. Theory 
and experiment are shown to be in essential agreement. 

This report is divided into three parts. In the 
first part, the experimental apparatus is described in 
detail.  In the second part the theory of the calorimeter 
is presented.  In the last part,, the experimental results 
are described and compared with the theory. 
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EXPEBIMENTAL APPABATUS 

The experimental apparatus used for this  research consisted of three 
basic parts plus the necessary electrical control and measuring components. 

The three basic parts were (1) the spherical calorimeter proper (2) 
the spherical shield furnace and (3) the vacuum system. The electrical 
components were (1) potentiometer for measur« -ig emfs developed by thermocouples 
(2) DeC. current source for internal heater (3) potentiometer for measuring 
current through internal heater (4) regulated A„C. source for shield heater 
(5) thyratron control circuit for regulating voltage to shield heater and 
(o) electrical controls of vacuum gauges. 

The Calorimeter - The calorimeter was turned on a lathe from a piece 
of high purity graphite rod. A special fixture was constructed for the 
lathe which made possible the accurate turning of spherical forms of any size. 
The calorimeters used in this research were about two inches in diameter. 

A hole was bored into the calorimeter and threaded. A graphite plug 
was turned and threaded to fit this hole. The internal heater fitted snugly 
inside this plug, Two small holes in the plug, lined with small pieces 
of clay pipe stem, allowed the electrical leads from the heater to be brought 
out of the calorimeter,, Very high elect.*ical insulation of the heater 
winding from the calorimeter was achieved using this method - the resistance 
between the heater winding and the graphite calorimeter being of the order 
of 200 megohms or greater. 

The calorimeter thermel was fastened to the surface of the calorimeter 
using a graphite screw. The end of the thermel was just under the surface 
and hence did not "see" the shield wall. The the rise* *»= "«+ in«»iat*»H UwJ. wn<a> Mv t- iii^uj.uv^u 

from the calorimeter,, Figure 1 shows a drawing of the calorimeter and 
the shield furnace. 

The Internal Heater - The design of the internal heater shown in 
Figure 1 is but one of many different types which were tried in this research. 
The size and shape were varied. The size (gauge) of the Nichrome wire 
was varied. The heater was operated.with-a solid ceramic center with an 
empty center and with a center filled with a solid graphite plug. The 
space between the wire and the graphite plug was operated empty and packed, 
with synthetic periclase. 

The final design consisted of a thin lava cylinder upon which the 
*20 (D. 6 S.) Nichrome wire could be wound. The wire was held in place 
by means of a double thread. The wall thickness of the lava form was about 
1/16". The center of the lava farm was filled with a snug fitting graphite 
plug which made good contact with the calorimeter at one end and the threaded 
plug on the other end. The apace between the wire and the plug w?s left 
empty since the periclase did not increase the heat transfer coefficient. 

As-will be seen0 in the theoretical section which fallow-?,, the basic 
requirements for the heater are low effective heat capacity and good thermal 
contact with the calorimeter. Another constructional feature highly desirable 
is good thermal contact of the leads with th- calorimeter. The need for 
this last requirement was not fully realized ytil all of the expexiraentai 
work was finished. 



I 

I 

I 

Tl 
B 
M 
3 

U. 

"D *-* 
1> •-< o M 

JC B <D 

tO —> *—< • -« ^ 
4> CD t3 •* 

•O   N P B J 
c -~( v< •<H 

co lO 0) —« 
z T3 

-* 
J-l   —< •—1 o *-> M 0) 

4>   K c en HI •F* v> 
«->   3 u c 

~ 
*J •B •a 

IS V 0) <D tO CO 
*-* JC o 3 ••* < 8 :—« V —< —• 4) 

M w «J CO «-> <-> 
o -i -o •«< c Wl •a • »* M 

•-H U -H £ M O —« JS 0) 
CO o o o. C> ^ Q. a; a. «-> 

<_> —i '*+ <tl 3 •-> a. • ^ CO CO 
.15 -C K .—i e 3 .B u o 

!-> to •o a. —( CO to o — 
—^ 
o <j <rt _J 

M :—• w a. *-^ CO 9 o _1 
3 
O 

a 
\ 

\    ' 

A 

to •Jh.- 

"^ O 

71 



I 
I 
I 
I 
I 

1 

I 

I 

I 

I 
• 
1 

1 

Shield Furnace - One of the most persistent problems throughout this 
research has been the method of constructing the shield furnace. The 
essential requirement was an isothermal spherical surface. The early 
shield furnaces used in this research were approximately spherical but 
very likely not isothermal. The final furnace, shown in cross section 
in Figure 1 fulfills both of these requirements very closely. Since the 
construction of a spherical furnace has apparently been a major reason for 
not using a spherically symmetrical design it would appear worth while 
to describe briefly the evolution of our furnace. 

The first spherical shield furnace consisted of two ceramic hemi- 
shperes with a Nichrome heating wire fastened to the surface. These 
ceramic forms were made on a jigger using ordinary pottery clay. After 
the half shells had air dried,, a loxodroraic groove was machined on the 
outer surface. A special machine was designed and constructed to machine 
this groove. The Nichrome wire was held into the groove by means of 
fine wire ties. This furnace was used up to about 400°C which was its 
upper limit. 

In an attempt to increase the upper temperature limit of the furnace, 
various insulating cements were tried. Of the many cements tried only 
{ordinary furnace patching cement (Rutland) stuck to the ceramic forms 

during the curing cycle and subsequent heatings in the vacuum system. 
Even this cement eventually cracked off. With this insulation on the 
outside of the furnace the upper temperature limit was about 1200°C (the 
limit of the Nichrome wire). 

We were not satisfiea with these furnaces due to the fact that (1) 
it was difficult, to fasten the shield thermocouple to the inner wall of the 
ceramic form, (2) it was impossible to be certain that the two half shells 
had not shifted relative to each other after the furnace was in the vacuum 
can, (3) it was almost certain that there was a cooler region around the 
equator where the two half shells came together and *4) it w^s difficult 
to make the ceramic forms of the same size and exactly spherical. 

To solve these problems a graphite liner was made to fit inside of 
the ceramic furnace. This graphite liner could be  turned exactly spherical 
on the lathe (our special fixture making this possible) and could be made 
with interlocking edges. Furthermore, the shield thermocouple could be 
screwed into a blind hole in this graphite liner thus assuring good thermal 
contact. The good thermal conductivity of the graphite would tend to equalize 
the temperature throughout the inner surface. Since entirely new ceramic 
forms were necessary for this furnace a new method for insulating the wire 
from the outside was tried. A thin ceramic semispherical shell of fire 
clay was made which could be slipped over the wire windings. 

This furnace was used for several series of experiments but there 
was a disadvantage to this design,, The lag between a change in hea; input 
to the heater and the change in the shield temperature was too.great - it 
was difficult to adjust the shield to a predetermined temperature. To 
decrease this lag, the final design was evolved. 

The last shield furnaces used were made by laying on the outer surface 
of the graphite shells a thip. (V°) layer of plastic alundum cement. After 
this layer had air-dried, it was carefully turned to a semispherical shape 
on the lathe. A loxodronic groove was theu-.fliaoMne.d ir-to the surface, 
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A preformed Nichrome winding was laid in this groove ana tied on using 
thread. Another layer of alundoia cemtent was then applied, allowed to eir- 
dry, and turned to an exact semispherical shape. The whole piece was then 
heated in a muffle furnace to about I.iOO°C to cure the alundura cement.. 

From this description, it ought now to be obvious that the construction 
of a satisfactory spherical furnace is no longer a major hurdle to the 
use of spherical symmetry, 

Tne use of the graphite liner gave rise to a new problem. JSiiile the 
vapor pressure of graphite is very low, it is finite and after several 
weeks of heating in a high vacuum, the entire contents of the shield furnace 
became coated with a very thiu film of graphite. While the electrical 
resistance of this graphite film was large, nevertheless, there was an 
appreciable electrical conductivity from the calorimeter to the shield 
liner* This conductance path shorted the two thermocouples to each other. 
The resistance of this short, which was of the order of several megohms 
at room temperature, decreased to several thousand ohm at elevated temperatures. 
The end? developed by the thermels was irratic. 

Xo keep the calorimeter electrically isolated from the graphite shield 
iiRer "film breakers" were placed on ail connections from the calorimeter 
t» the shield. The design of these "film breakers" and their method of 
operation may be seen in Figure 2, Only the carbon atoms approaching the 
film breaker withia the rather small 
critical angle would eater the inside. 
Host cf the atoms entering would deposit 
on the band just opposite the groove. The 
result was a break in the film, or at 
leapt a region where the film was very 
much thinner than at other places and had 
consequently a very high electrical 
resistance. For a period of «bout four 
weeks, during which the shield was contin- 
uously maintained at over 300°C, these 
film breakers were able to keep the calor- 
imeter effectively insulated from the 
graphite shield lir-.or. 

Figure 2  Film Breaker 
(Cross-section) 

Critical Angle 

Snug Fit 

Pipe Stem 

Vacuum System - The vacuum system 
in which the shield furnace, was operated 
was constructed from steel pipe. Figure 
3, drawn to scale, shows the main parts 
of the vacuum system* This all met>>! 
vacuum system evolved as our experience 
with high vacuum technic grew. The apparently large (4") pipe leading to the 
oil diffusion pump was necessary to give a rapid pumping speed in the working 
chamber,, This was a dynamic system » the pumps operating continuously. 

While this report is not the 'proper place for petty experimental details, 
it does seem appropriate to record some of the hard won high vacuum technics. 
Some cf these technics are self evident - now.  (I) A metal vacuum system 
is easily tested*iM leaks by applying pressure (10-15 p.s.i.) inside and 
using a soap - glycerine solution on likely spots for leaks. The addition 
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of glycerine enables one to apply a thin soap film on vertical surfaces/ 
(2) The system should always be tested for leaks before pumping down. It 
takes much longer to find leaks by waiting until one can't seem to get a 
good vacuum,  (3) Any connection or joint is a possible location for a 
leak. We found, after about a week of searching, a leak in the vacuum gaugej 
(4) Make permanent repairs on all leaks, soldering, welding, or brazing. 
(5) We did not find "glyptal" good for permanently repairing leaks.  (6) 
Rubber gaskets, when placed in properly designed gasket grooves, are quite 
reliable CO" rings are now available which would simplify assembly). 
(7) Connections may be made with ordinary pipe fittings only if the connections 
are also soft soldered. It is easy to take such joints down since the soft 
solder is easily melted with a hand torch.  (8) One-eighth inch standard 
pipe fittings wiii hold a good vacuum if the threads are coated with glyptal 
before being assembled. 

The pumps used for this apparatus consisted of an oil diffusion pump 
(D.P.I,, Model MC 275) backed by a Cenco Megavac mechanical pump. After 
outgassing the system, pressures of 0.01 micron could be readily obtained 
at room temperature. It was possible to maintain pressures of less than 
0.1 micron with the furnace operating up to 600°C. 

So that the purops could be operated continously a safety switch was 
installed in the A.C. line which powered the heater of the oil diffusion 
pump. This switch turned off the heater current if the water pressure dropped 
below a predetermined level. The unreliability of the services supplied 
to our laboratory made this and other safety features necessary. 

Pressures were measured using a thermocouple type gauge (Hastings 
Model GV) at the fore pump and using a Philips gauge (D.P.I. Model PHG-1) 
on the top of the main vacuum chamber. The Philips gauge was not found to 
be reliable and is not recommended. 

The electrical lead-ins for a metal vacuum system presented a problem,, 
The solution was found after Stupakoff Kovar to glass seals were discovered. 
These glass to metal seals are available in almost any size or shape. It 
was found extremely difficult to make a rubber packing gland fur leading 
wire cut of a vacuum system and which was electrically insulated from the 
vacuum system. 

The lead-ins far the thermocouples were 
designed to avoid contact of the platinum 
metal with other metals. The details of 
these lead-ins are shown in Figure, 4. These 
lead-ins werenot very reliable and had to 
be tested frequently for leaks since any 
motion of the thermocouple wire could crack 
the brittle picsin cement. 

The whole vacuum chamoer was immersed 
in water in a galvanized tank. The tempera- 
ture of the water was maintained approxi- 
mately constant by allowing water to 
continuously flow through the tank. 

Figure 4 Thermel Leadins 
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Temperature Measurement: Early in the research Chromel - Almnel tnennels 
were used. These therme.ls were not stable enough and so we changed to 
platinum, platinum - 13% rhodium thermels. The noble metal thermels have 
been quite satisfactory. 

_ The thernel potentials were measured using a type K-2 (L. & N.) potentio- 
1    meter. The galvanometer (L. 6 N. type 22G4) had a sensitivity of about 0.045 

micro volts per mm.. An effective sensitivity of about 0.1 micro volts per 
no was actually realized due to the fact that this research was done in rooms 
on the second floor of a temporary frame building. 

The thermels were calibrated using the freezing points of standard 
samples of metals (obtained from the Dureau of Standards). The results 
of this calibration are given i«. Table 1. It is seen that the thermels 
differed by less than 2 raiurc volts from the standard tables. Two micro- 
volts is about 0.2°C. 

labjg l 
Calibration of Thermels, Cold Junction 0°C. 

Metol Melting Point* Observed emf's 
Calorimeter Shield 

Tin 1.7504 mv. i.7490 mv. 1.7490 mv. 
(231.9°C) 

Lead 2.6624 mv. 2.6607 mv. 2.6596 mv. 
(327.3°C) 

Zinc 3.6000 mv. 3.5906 mv. 3.59G7 mv. 
(419.5°C) 

Aluminum 6.2479 mv. 6.2470 mv. 6.2468 mv. 
(659.7°C) 

* Values computed using N.B.S. standard tables for Pt, Pt~13% Rh thermels. 

It was early noticed that the calorimeter thermel did not give the 
«ame emf as the shield thermel when the two were suoDOSed to be at the 
same temperature. This difference was greater than the difference in 
calibration of the thermels. It was noted »hat the shield thermel had 
the larger emf in all ca^es when the graphite lined furnace was used. 
When the ceramic shield furnaces were used the potential difference between 
the shield and calorimeter thermels was either positive or negative. It 
was also noted that there was considerable AC pick-up by the shield thermel. 
This 60 cycle pick-up did not usually interfere with the potential measure- 
ments due to the fact that the period of the galvanometer was large. 

The difference in potential between the shield and calorimeter thermels 
was positive when the graphite lined shield furnace was used. This difference 
ranged from 6 to 33 microvolts as the temperature of the shield varied from 
600 to 900°k.  Fhis difference varied in an approximately linear manner with 
the temperature and had a temperature coefficient of about 0.1 ^iv deg~^. 

- 0 - 
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This tempera tare- coefficient was too small for most thermal generated 
emfs. Possibly this potential arose from a rectifying action of the ceramic 
at elevated temperatures. Ceramic materials are known to become semiconductors 
at high temperatures. 

Internal Heater Control - Like all other parts of the apparatis the 
Internal heater control system underwent considerable modification as the 
system evolved. The final circuit was basically very simple as can be 
seen by Figure 5, 

Battery 

Figure 5 Internal Heater Circuit 

Direct current from three automobile 
batteries operating in parallel was 
allowed to pass through a rheostat, a 
standard resistor and the internal heuter 
all is series. The potential drop across 
the standard resistor and the internal 
heater could be measured using a potentio- 
meter. The resistance of the standard 
resistor was 4.9711 ohms. Tbe resistance 
of the internal heater varied with the 
design but was about five ohms. By 
keeping the batteries almost fully 
charged, it was possible to maintain tbe 
current through the heater constant 
(i0.1)D over long periods of time 
(1 to 2 hours). 

Tbe amount of heat being supplied 
by tbe heater was computed using the 

relation: q = flidJLJEifil   Where q is 
R$td x 4.1833 

the heat being generated by the internal heater in calories per second, 
Estd tne potential drop (in volts) across the standard resistor, Ejnl the 
potential drop across the internal heater, Bst(j the resistance of the 
standard resistor and 4.1833 the factor to convert to calories (the potentio- 
meter was calibrated in old practical units). Tbe resistance of tbe two 
short pieces of copper wire which connected to the internal heater was 
approximately 0.02 ohms. This was considered negligible and no-correction 
wat made. 

Shield Heater Control - The control of the shield heater is a problem 
which never was satisfactorily solved. The problem is one of constructing 
autcm.uic control devices which will be sufficiently sensitive and able 
to cope with rather large thermal lags. Our best automatic device controlled 
the shield temperature to about ±0,1°C which for a temperature of 500°C 
is 0.02%. This relatively high accuracy was not sufficient. It is believed 
that an accuracy of 0.001°C is needed. 

The j/O'.-e- for the shield was obtained from the AC lines. The variation 
of tne voltage was> much too nreat and so a voltage regulator was installed. 
The unit used had 3 capacity"of 5KVA.  (Superior Model EH 4106).  The 
voltage was reduced to the amount required for the shield furnace by using a 
Variac (model V20). Fox some of the experiments a 1KVA voltage regulator 
was used (Superior Model IE 5101). This latter electronic regulator was 
more satisfactory, 
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P.S. Phase Shifting Circuit 

T   Transformer 

Rj   Resistor (2 ohms) 

R2   Furnace (12 ohms) 

V   Variac 

Figure 6 Thyratron Control Circuit 

A.C. 

Saall adjustments of the heating current to the shield furnace were 
made using a thyratron control device. The circuit of the control device 
is shown in figure 6. The device FG - 27 
operated by alternately shorting 
out resistor 81. The length of 
time, during a cycle, that R\  was 
shorted out could be controlled. 
The resistor Ri was shorted out 
when the secondary of the trans- 
former was shorted. This trans- 
former was able to draw current 
during the part of the cycle the 
thyratron tube conducted. The 
portion of the cycle that the 
thyratron conducted depended on 
the phase between the control gird 
and the plate. This phase could 
be shifted by means of the phase 
shifting circuit (not shown in 
detail). The relative phase shift 
was controlled by applying a small 
(0 to 5 volts) DC voltage to the 
phase shift circuit. Thus, with 
this device, the amount of time 
the resistor R} was shorted could 
be varied from 50£ to 0% of the 
time. 

Ine most successful automatic control device constructed derived the 
voltage for operating the phase shifting circuit by "observing" the position 
of a galvanometer light beam using two photoelectric cells as "eyes". 
These two photo cells were so arranged that when the galvanometer was at 
the null point the phase shift was maintained at some particular value. 
When the temperature went up, the galvanometer light beam moved (since the 
voltage of the thermel was balanced using a potentiometer) and thus more 
light was received by one of the photo cells. This changed the value of the 
voltage bei.jg supplied to the phase shifting circuit. The resistor, Si, 
was then not shorted out as much of the time. This control device was able 
to control the temperature to within about ±0.1°C. The oscillations of the 
system were caused by excessive thermal inertia in the system. 

By regulating the voltage to the phase shifting circuit manually it 
was possible to maintain the temperature constant to within ±0.001°C during 
calibration experiments. During cooling experiments the regulation was 
usually not better than ±0.01°C. This degree of control (during cooling) 
was not believed sufficient. 
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Heat Transfer - The rate of transfer of 
heat qC5 from the surface of a sphere of 
radius (L whose temperature is i'c to a 
concentric spherical surface of radius Rs 
and temperature Ts is given by the equation: 

4   4 
qcs= *VTc ' Ts } + MTc V (1) 

Where 6-  1.36 x 10"9 cal/sec deg4 era2 

(Stefan - Boltzmann Constant), A = Surface 
area of inner sphere, kn the thermal con- 
ductivity of the supports etc. of the inner 
sphere and g is given by the equation*: 

/ 

g = %- es)  (ftc'/Hs*) (2) 
es + ec 

In equation (2) es and ec are the emmis- 
sivities of the outer and inner surfaces 
respectively. Figure 7 shows the physical 
relations assumed. 

I 
Figure 7 Basic Calorimeter 

(Schematic) 
Equation (1) assumes that the space 

between the two spherical surfaces has been 
evacuated to a low enough pressure so that convectional heat transfer has been 
reduced to zero. Equation (1) thus assumes that the heat transfer is by 
radiation and ordinary newtonian conduction. 

Equation (1) may be greatly simplified by noting that 

Whereof = Tc - Ts and Ta 
hand side of equation (3) 
in place of equation (1). 

:,« =  4jy AT + TaCSr)' (3) 
= ^(fc + rs)« Since the second term on the right 
is small compared to the first term, one may write 

qcs = (4 fAv + kn)*
1' = kcsAT (4) 

Thus over a small /an>jo vi   Li:mperatures (so that Ta does not vary too greatly) 
tne rate of heat transfer is directly proportional to the temperature difference. 
This equation *ili be shown to be valid for the actual calorimeter which has 
been experimentally studied. It is seen that the rate of heat transfer will 
depend on the cu'>e of the average teuperature. 

Cool inn of g P-T fert. Conducting Sphere - If the inner sphere of Figure 7 
is a perfect heat conductor in which :ase the temperature will be constant 
throughout, the rjt° of colino will be- given by the equation: 

-C <Jf = Qcs       ^5) 
at 

Where C is the heal capacity of the sphere.  If the approximate equation (4) 
is used for qcs we obtain 

-C *p_ = !.„. (TA - Tc).     (6) cs 

* A note on radiation heat transfer, by G. A. E. Godsave, Memo No. M.Ill 
National Gao Turbine Establishment, March 1951. 
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If Ts maintained constant, then equation (6) may be integrated and the 
result is 

In  (Tc - Ts) = ln(Tc° - Ts) - *{$ t      (7) 

or Xc - Ts = (Tc° - Ts) exp(-kcs t/C)       (7') 

T     Ifhere Tc°= Tc when t = 0. Thus a perfectly conducting sphere will cool 
1     exponentially when losing heat by radiation and conductance to a constant 

temperature heat sink. If a graph of ln(Tc - Xs) vs t were made, then a 
straight line would be obtained whose scope would be "kcs/C. This ratio 
kcs/C« wn*cn uas tne dimensions of reciprocal time units (sec'1), will be 
known as the time constant for the sphere. If kcs can be computed or measured 
then C, the heat capacity of the sphere, could be computed from the time 
constant. 

Equation (6) and consequently, equation (7) were obtained assuming the 
approximate equation (4). It is possible to use the more exact expansion 

j.     for qCS; (1), and cany through an approximate integration. If qCs from 
equation (1) is substituted into equation (5) then one obtains after rearranging 
and simplification the differential equation: 

 „ 4*  =   - f Aq TS
3  dt     (e) 

(x4 - 1) + a(x - 1) C 

Where x = Tc/Ts: a = kn/<5"Ag'fs . This equation can not be exactly integrated 
to a simple function due to the fact that the denominator of the left hand 
side may not be factored. If one is only interested in values of x close 
to unity then an approximate integration may be easily carried through, for 
this latter case, one obtains: 

1   in <x-U      4  ta»_1 (        2x  ^ = £TAgIs
3 t + I      (9) 

a + 4    (x+1)    Ca+4) V2a + 4     ^ vx2a + 4 I C 

I is the integration constant. When a = 0 this expression (9) reduces to the 
result obtained when equation (0) is exactly integrated with a = 0. If the 
left hand side of equation (9) is railed F(x,a) then one nay unite 

F'x a) = Hx^a) - gAflls3. t (10) 
C 

where x - x0 when t - 0.  l'hus a gTaph of F(x,a) vs t will yive a straight 
line whose slope i> • tf"Agfs /C, Since the values of F(x,a) require a value 
of "a" for their computation one would need to employ a method o.f successive 
approximations to use this equation for the computation of C.  In testing 
the use of this equation,, it was found tnat the values of the slope (- ^Agi's^/C) 
V*M$ not very sensitive to ra~„ This equation enables one to actual!) compute 
g/C rather than C directly, A method does exist for the estimation of <j 
and consequently if aquation (ii> w^re applicable to the experimental situation 
values of C coula be computed,, 

Comparison of equations :c>-   md  (7) show that the latter equation is 
sufficiently accurate tor  the pn-seut purpose. 

i 
Cooling of a Sphere whose Conductivity is Finite - The exact equation 

fo; th*» cooling of a sphere whose heat conductivity is not infinitely 
yeat is not simply derived. The difficulty arises because of the thermal 
gradient which may exist within the sphere. As a good first approximation 
one may replace thF finite conducting sphere by an infinitely conducting 
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sphere (of heat capacity C) surrounded by a 
spherical shell whose heat conductivity is 
some finite value, kc, but whose heat capacity 
is zero. 

Thus the rate of transfer of heat through 
the shell wiU be given by qcs = kc(T'c-Tc) 
(11) where T c is the temperature on the 
outer surface of the shell. But qcs is 
also given by equation (4) hence 
MT'c-Tc) = kcsUx-rs)  (12) from which 
one computes that 

re = Tcu+fc*) -te*T, 
If i's is constant then 

lit = (i +hx\ die 
t \        kc   }   dt 

dT'e _ 
d 

and since equation (5) becomes 

-C *• = Cos 

(13) 

(14) 

(15) 

Y« 
Figure 0 

Calorimeter with finite Conductivity 

for the case under consideration we obtain 
simply 

_C/l + U& )  flic = k„(T, - Te) dt 'cs 

give: ln(Tc - fc) = ln(fe
0 - Ts) - £c* JL 

(1 + kxs.) 

(16) which integrates to 

t (17) 

j     i'hus a plot of ln(Tc - Ts) vs t will now have a slope of - *£* r   * 

1 
i« 

It -m is the slope of the plot the heat capacity is given by the equation: 

m 
(l(i) 

(kc + kcs) 

If kc is large compared to 1<C$  the result will reduce to the same expresrion 
as obtained from equation '7)„  In general if kcs/m = C then the true value 
of the heat capacity is obtained by multiplying the apparent heat capacity 
C  by a factor wiiich is isss thar unity. Consequently the neglect of this 
factor will tend to gi*'e values of C which are too large. From equation (17) 
one predicts that a sphere with a finite conductivity will cool slower than 
one with infinite conductivity,. This result is to be expected due to the 
fact thit the outer surface temperature of a sphere with a finite conductivity 
will always be somewhat lower than the surface temperature of a sphere with 
an infinite conductivity. Since t.he surface temperature is lower, the rate 
of heat loss is also lowr, 

Cpolinu of a Sphere with an Internal Heater - Consider a spherical 
calorimeter with in internal heal source which is insulated from tiie calorimeter. 
If heat is being generated at the rate qe, calories per second within the 
hea! sourcel and if the rate at which heat is transferred from the internal 
heeler to the calorimeter is qic then the heat balance equation on the 
internal heater is 

qe  qic 
C- dTj _ • (19) 
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Where Cj is the heat capacity of the internal 
heater and Ti is the temperature of the 
internal heater. Under these sane conditions 
the heat balance equation on the calorimeter 
may be written 

«ic " C ^ " qcs= 0        (20) 

•here C is the heat capacity of the calori- 
meter and the other symbols have already 
been defined. Assuming for q;c and qcs 
relations of the form of equation (4) we 
obtain 

Isothermal 
^Surface 

^ 

\ Internal 
Heater 

'Wi 

qe - kic<'fi - Tc) - <* jjl = 0 dt (21) 

Figure 9 

Calorimeter with Internal Beater 

*ic«i - V - C $t  - WV V=° <22) 
If fs, the shield temperature, is 

constant, this pair of differential equations 
may be solved. Under steady state conditions 
one notes that qe = qcs. This allows one 
to evaluate, experimentally, qcs as a 
function of Tc(if Ts is constant) and 
consequently to obtain the value of kcs. Under cooling conditions q^ is zero. 
Under these conditions, the equation on the calorimeter temperature may be 
shown to be 

(Tc - Jc°°) - (Tr° - Tc' 
(1 -°0 

1) (c0*1 - ofc1*1) (23) 

Where Tc°° = calorimeter temperature when t oo o _ T„w = calorimeter temperature 
when t = 0 JII and m2 are the roots of the equation: 

m2 + /W + iLLc + fcx*\ m + Kic Kcs = o 
l,Ci   C     C J CiC 

and 0(- mj/i^. Both mj and ni2 are negative quantities, and since -03 if 
greater than -mi the quantity p( is less than unity. 

(24) 

If a plot of ln(Tc - Tc°°) is made, a curve similar to the full line 
of Figure 10 will be obtained. At sufficiently large times the curve will 
be a straight line of slope equal to m}. This straight line will appear 
as though the calorimeter started at zero time at a higher temperature than 
actually observed. From the apparent value of this intercept, one may 
compute o; . 

Since m] is known from the slope, one may therefore compute both 
mj and m2» 

The quantity mj is given by the exact expression 

nn   = YA -/iin   + Mi* + kcs) 1      1   la*       c      c y L 
+ Uc + kcs)     - 4kUc + kc* 

C C J        Cj c r)"] (25) 
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Since essentially three para- 
meters are needed, i„e„ kjc/Cj; 
kjr/C and krc/C and only two relations 
are known one may not directly compute 
these three parameters. Of the three 
numbers kj^/C is the smallest. If 
this cross term ki0/C is neglected 
(assumed zero) then one finds that 
mi = -kcs/C and m2 =<-kic/Cj. Since 
kcs may De experimentally measured 
one may readily compute C, the heat 
capacity of the calorimeter. If 
kjC/C is not assumed equal to zero 
then a simple calculation shows that: 

T o  T <x> 

Slope = m^ 

U-c &—\ (26) _ kc^ .- mi 1  + 
c  ^ ni + kic/qy 

Thus the values of C computed on the 
assumption that kic/C is zero will 
be too large. ln(T„ - 

Cooling of a Sphere with Varying 
Shield Temperature - The physical 
representation of the case under 
consideration is as shown in Figure 9. 
The differential equations for the 
internal heater and calorimeter will 
be equations (21) and (22) respect- 
ively. The heat balance on the shield 
will be given by the equation: 

<lcs 
dTj 
dt 

+ qE - qse ~ ° (27) 

time, t 

Figure 10 
Cooling of Calorimeter with Internal 

Heater 

where Cs is the heat capacity of the shield, qg the rate heat is supplied by 
the internal wire winding of the shield heater and qse the rate which heat 
is lost by the shield to its outer environment. This equation assumes that 
the thermal conductivity of the shield material is large* This assumption 
is probably not valid but will enable one to compute the largest possible 
effect of shield temperature variation on the cooling of the calorimeter. 
When qcs is zero and 3 steady state exists, the value of qg is equal to qse. 
If then qE is maintained at this value and if it is assumed that qse does 
not change when Ts changes by small amounts then equation (27) may be written 
as 

kcs (Tr - T-) - C- dl& = 0 c   s    s d 
(28) 

where kcy  'T - &) has been substituted for qc§. If differential equations 
(21)„ v22)0 and (21)  are solved simultaneously (with qe = 0) the equation 
for the cooling of the calorimeter is found to be: 

o 
(T, 

001 = IX • 9 

oo ^J^ll 
(1 -oO 

eralt -d&^QS 

where c£= raj/n^ and 

(29) 

«1 = li kic. + kic + k^ + Mc&Vl\(k±c + kic.+ kcs.+ &c&)   -4 /JLic kxs. + kic. ikes. + ki 
<v Cs J c 

(30) 

kcs. 
Cs 
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n>2 is computed from an expression sirailiar to (30) but with negative si<jn 
before the radical. 

If k^g/C and kcs/C are zero one finds that raj =-kps^ an(^ m2 = ~icic/ci* 
These results are the same as obtained with the assumption that kjc/C is zero 
and Ts is constant. Assuming kcs/Cs is zero is equivalant to assuming an 
infinite heat capacity for the shield. This is the same as assuming that 
Ts does not change. 

If as another limiting case of equation (28) one assumes only that kjc/C 
is zero* then one finds that /.  . \ 

mi = ~kcs(S + tsJ- (31) 

This result is of importance since it enables one to estimate the magnitude of 
the effect of a drifing shield temperature on the computed value of C, If 
mj is obtained from the limiting slope of a graph of log (Tc - T^3)  is t 
then the value of C computed using equation (30) and assuming Cs is infinite 
would be actually smaller than the true value. Equation (31) shows that 
the rate of Cooling can, under some circumstances, depend on both the heat 
capacity of the calorimeter and the shield furnace. 

/, 

Cooling of a Sphere with a Leakv 
Internal Heater - The last cooling calcula- 
tion of importance to the present study is 
the case of a calorimeter internal heater 
which leaks heat directly to the shield. 
The physical arrangement.is shown in 
Figure 11. The direct heat leak from the 
internal heater to the shield might, in 
actual practice, be caused by the thermal 
conductance of the copper leads from the 
internal heater. This is probably a 
simplification of the actual situation 
but it will be sufficiently accurate for 
the present purposes. The basic heat 
balance equation on the internal heater 
and calorimeter will be the same as 
equations (19) a and (20) but with an 
additional term ~qjs added to the left 
hand side of equation (19). The result 
of solving these two new differential 
equations is formally the same as 
equation (23) except that mj and nK> have sligntly different values= 
again a., oaed that kjC/C is small then one finds that 

/ 

Ls 

Figure 11 

Calorimeter with Leaky Heater 

If it is 

*1 = ~¥ (32') 

and nv (kjc ± kjs)    (32") 
Ci 

is the thermal conductivity of the leak from the In these equations kjA 

calorimeter internal heater to the shield. It is of interest that this leak 
does not effect the value of the limiting value of the slope of log (Tc - Tc ) 
vs t. As a matter of fact, since this leak actually makes m2 more negative 
the influence of the stored heat in the internal heater on the cooling curve 
of the calorimeter is reduced. 
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EXPERIMENTAL RESULTS 

The basic experimental data are of two kinds (1) calibration data and 
(2) cooling curve data. Calibration data consists of values of the calorimeter 
and shield temperatures for various different, values of the heat input under 
steady state conditions. Sets of calibration data will differ from each other 
in the average temperature of the system. Cooling curve data consists of 
values of the temperature of the calorimeter and the shield as a function 
of time when the system is allowed to cool with zero heat input to the calori- 
meter. Cooling curves will differ as to the average temperature. In addition 
to these basic data various special measurements were made. These special 
measurement" will be described as their need arises. 

Calibration Data - Two kinds of calibration data have been obtained. 
In the first kind of calibration data, the heat input to the shield furnace 
(qg) was maintained approximately constant, while in the second kind of 
calibration data the temperature (Ts) of the shield was maintained constant. 
Both qg and Ts can not be kept constant for a set of calibration data. 
In general if qg is kept constant Ts will increase when qg (input to calori- 
meter heater) is increased. To maintain Ts constant for a set of calibration 
data qg must be decreased very slightly for each successive larger value of qe. 

Steady State Heat Balance; - Since either type of calibration data 
are steady state measurements on the system the same basic equations will 
apply. These basic equations are obtained by setting all time derivatives 
in the general heat balance equations equal to zero. Under these conditions 
the equations are: 

Internal Heater; qe - qjc - qjs =0 (33) 

Calorimeter:    qic - qcs = 0 (34) 

Shield: Qe + <*E - Qse = ° (35) 

In these equations qe & qg are heat inputs (cal/sec) to the internal heater 
(calorimeter) and shield respectively qjc and q^s are the rate of heat 
transfer from the internal heater to the calorimeter and the shield respectively. 
qis is the "leak* from the internal heater to the shield. qcs is the rate 
of heat transfer from the calorimeter to the shield while qse is the rate 
of heat transfer from the shield to the environment. In general we will 
assume that any rate of heat transfer, qjj, may be written in the form: 
qij = ICJJ (T| - Tj) where kjj is the heat transfer coefficient between 
i and j while Tj and Tj are the corresponding temperatures. 

The behavior of the shield during calibration may be deduced from 
equation (35). If qg is kept constant as qe is increased then qsc must 
increase if this equation is to remain valid. qse can only increase if 
the shield's effective temperature for heat transfer to the environment 
increases. Thus Ts must increase  as qe is increased. 

In the second kind of calibration data Ts is maintained constant and 
thus qse is not allowed to increase. Equation (35) requires that qg be 
decreased by an amount equal to the amount q^  has been increased. Since 
the values of qg used were usually no greater than about 0.4 cal/sec. this 
would set the upper limit on the amount of adjustment which would need to 
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be made in q£.  The aoount the temperature of the shield increases who..  qe is 
increased with constant qg depends upon the average temperature of the shield. 
At low temperatures the shield temperature increases about 23 degrees per 
calorie/sec. Thus for a value of qe of 0.4 calorie/second the shield temperature 
would increase by about 9°C. The increase in shield temperature is found 
to be directly proportional to qe. As the temperature increases the rate 
of increase in shield temperature with increase in qe will be less. 

Of fundamental importance is the experimental determination of qcs 
as a function of Tc and TSt combining equations (33) and (34): 

les = <k  ~ 9is        (36) 

If qjS, the heat leak to the shield were zero, then qcs could be evaluated 
directly. However qjs is not zero. q^s is however, approximately proportional 
to qe whence equation (36) may be written: 

qcs = TeQ-9) 

or qe = Sc* = J*c* (Tc - T.)      (37) 
^  1-a   1-a   c   5 

in equation (37) "a" is the proportionality constant in the equation q*s = aq^. 
Equation (37) shows that a plot of qe vs Tc - Ts ought to yield a straight 
line whose slope is somewhat greater than kcs. If "a" can be estimated then 
kcs can be computed from the experimental calibration curve. 

If q- could be estimated directly, then the quantity q - q. could 
be plotted against Tc - T. and the heat transfer coefficient k-s determined 
directly from the slope of the straight line. A method of estimating q^s 
would be to estimate the temperature of the internal heater wire and compute 
<Us by the equation qjs = kjS (Tj - Ts). Tj may be estimated from the 
resistance of the internal heater wire using the equation: 

Rt = R0 (1 + (3 (t - t0) )        (38) 

where ^t and R0 are the resistances at temperatures t and t0 respectively 
while Q is the temperature coefficient of resistance (1.66 x 10"^ deg-*) 
of the .ichrome winding. The resistance of the wire of the internal heater 
may be computed from the measured voltage drop and current. Knowing Tj - Ts 
one may compute qjS if the value of kjS is known. kjs may be estimated 
from the thermal conductance of the leads. The leads of the calorimeter were 
mad* of copper wire (B C  S No. 20) and were approximately 4.13 cm long. 
Using 0.92 for the thermal conductivity.of copper one computes k^s as 
approximately 3,6 x 10~4 cal set"1 deg . The data and calculations for 
a representative calibration curve are giveii in table 2. 
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I Estimatior of Heat Leak 

Table 2 

from Internal Heater. Temperature 57o°C. 

1 q*»(cal/sec) 
H (Ohms) 
heater Ti - TS°C qis(cal/sec) qr.s(cal/sec) 

1 
0.0000 

0.0606 

(5.8485) 

5.8510 

0.00 

2.53 

0.0000 

0.0009 

0.0000 

0.0597 

[ 0.2179 5.0570 8,67 0.0031 0.2148 

0.3993 5,6624 14.28 0.0051 0.3942 
«- 

• 

If this estimate of q^s is correct then the error made in neglecting qjs 
is less than 2%, There is sotae uncertain!ty that the internal heater 
leads made sufficiently good thermal contact with the shield to be considered 
at the shield temperature at their extreme ends. If the ends of these 
leads operate at an appreciably lower temperature the heat leak will become 
significantly larger. These considerations would suggest that kcs, as computed 
from the slope of the calibration curve might be too large by 2 to 10%. 
Redesign of the internal heater leads would allow this uncertainity to be 
greatly reduced. 

Graphs were prepared of qe vs Tc - Ts for the calibration data obtained 
in this research. The data obtained in which the shield temperature was 
kept constant gave good straight lines. The constant qg calibration data 
tended to show curvature. This curvature is likely caused by a slow drift 
in o£. 

From the graphs of cfe vs Tc - Ts values of kos can be computed. 
According to equation (4)„ kes ought to be linear in the cube of the average 
temperature if kn and g are not dependent on temperature. A graph of the 
values of kcs vs Ta

3 showed that the data scattered rather badly around 
a straight line through the origin. As is seen in the figure (Fig. 12) 
there does not seem to be a regular trend in the data. It is believed 
that the scatter was caused by variation in kn from one temperature to 
another caused by difference in the pressure in the system. No absolute 
check on the pressure was possible during all the experiments due to the 
fact that the Philips5 gauge electronic control unit developed an electrical 
defect. 

The slope of the straight line through the origin and the data is 
3.47 x 10"10 (cal sec"1 deg"4). According to equation (4) this quantity 
-•ought to be equal to 4<5"Ag0 Since 4<rA is known to be 4.41 x 10~*°(cal sec"^deg"

4) 
one obtains 0.787 for g, When this value for g is substituted into equation 
(2) the emraissivity of tfert graphite surface is easily computed. Note that 
both surfaces are identic?)] ^nd hence the calculation may be made. One 
finds 0,824 for the eramissivity of the graphite surfaces. This value is 
reasonable fry this substance. The fact that the value of the emmissivity 
is of the correct order of magnitude suggests that the basic theory is correct. 
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Cooling Data - The cooling data obtained were of two kinds. The first 
kind was obtained at qj? constant while in the second kind the value of Ts 
was maintained constant. Both kinds of cooling curve data were similar 
during the initial part of the cooling interval. The two kinds of cooling 
curves differed during the latter part of the cooling interval. The constant 
Ts curves being characterized by a rapid asymptotic approach of the calorimeter 
temperature to the shield temperature. The constant qR curves on the other 
hand appeared to be approaching the cooling curve for the shield. 

According to the simple theory (equation (7)) a graph of log (Tc-Ts) 
vs t ought to be a straight line. This is not found for the data of this 
research. Instead curves of the 
general shape of those shown in 
figure 13 are obtained. Both curves 
are similar in shape at small times. 
Both curves leave the ordinate at zero 
time with zero slope. The slope 
gradually decreases. In the case of 
constant shield temperature, the slope 
becomes constant. In the case of the 
experiment, at constant qj? the slope 
passes through a minimum (largest 
negative value) and then increases 
again0 In (Tc - 

The failure of these curves to 
leave the ordinate at zero time with 
a finite slope is taken to be evi- 
dence for a thermal gradient 
existing between the internal 
heater and the calorimeter. At zero 
time, when the internal heater is 
turned off, the rate of heat trans- 
fer from the heater to the calori- 
meter does not immediately drop to 
zero. Rather,due to the fact that 
the heater has been operating above 
the temperature of the calorimeter, 
it will continue to furnish beat to 
the calorimeter at a rapidly 
decreasiny rate. Tat* lime required 
for this heat source to become 
insignificant compared to the rate of heat transfer from the calorimeter 
to the :Jaield will depend on the time constant of the internal heater. The 
time constant of the internal heater is numerically equal to the ratio of 
the heat capacity of the internal heater to the heat transfer coefficient 
between the internal heater ^nd the calorimeter. The smaller this quantity 
the less influence me internal heater will have on the cooling curve of 
the calorimeter. 

time 
Curve A: OJJ constant 
Curve B: Ts constant 

Figure 13 

Experimental Cooling Curves 

When the shield temperature is not kept constant during the cooling 
of the calorimeter it is  found to decrease., This decrease is slow at first 
but after about a thousand seconds may become quite rapid. The reason the 
shield temperature drops is that the heat being supplied by the calorimeter 
has been decreased., Thus eventually the rate of decrease of the shield 
temperature ean become equ*l to the rate of change of the calorimeter 
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temperature. When this occurs Tc ~ Ts will remain constant for a short 
period and hence the graph of log (Tc-Ts) vs tiae will be parallel to the 
tiae axis. Even if the rate of decrease in Tf does not beeowe equal to Tc 
the slope of the curve of log (T--TJ vs t will gradually increase (beesaw 
less negative). The curve. A, of Figure 13 shows this behavior. 

The uncertainity of the magnitude of the influence of the driftlag 
shield on the cooling curve of the caloriaeter suggested that the constant 
0£ data were less useful for the computation of the heat capacity of the 
caloriaeter than the constant Ts data. Consequently the detailed analysis 
has been confined to the data obtained at constant shield temperature. 

The aethod of confronting the cooling curve data with theory was to 
plot the logarithm of the quantity ATC = Tc - Tc°° , where Tc is the teapera- 
ture of the caloriaeter at time t while Tc°° is the temperature of the 
caloriaeter when the cooling is complete, vs the tiae. The slope of the 
straight line portion of the curve gives according to the theory (equation (23)) 
the quantity-k0S/C. The slope of the calibration curve, if proper connection 
for the heat loss from the internal heater is made, gives the quantity kcs. 
Consequently one may compute the value of C. 

In a typical experiaent at about 663°K the slope of the straight line 
portion of the log A lc vs t curve was found to be 2.16 x 10"3(sec"1). 
The corresponding calibration curve gave a value of 0.0901 (cal. sec* deg~l). 
Therefore the heat capacity of the caloriaeter is 41.7 (cal deg-1) or 
since there were 9.435 moles of graphite an atomic heat capacity of graphite 
of 4.42 (cal deg-* aole-l). The values in the literature vary between 
4.26 and 4.29. The experimental value ought to be slightly reduced for 
the saall contribution of the internal heater (less than 1% of the total). 
•ore iaportant is the possible error which exists in the value of kcs 
since the calibration curve was not corrected for the leak from the internal 
heater. The experimental value differs by only 3,5% from the mean of the 
literature values., This amount is well within the uncertainity of the 
calibration curve. 

Of less significance than the agreement of the heat capacity of graphite 
with the literature data is the agreement of the experimental data with the 
requirements of the quantitative theory developed above. The theory (equation 
(23)) predicts that the data ought to fit an equation of the basic form: 
4TC = lAlfilo (e»it . „ e a^) (39) 

where (ATC)0 is the value of ATC when t = 0. This equation has only 
two adjustable parameters <x and mi, both of which are easily obtained for 
any set of data by plotting the logarithm of A Te vs t. The slope of the 
straight line portion gives ax directly (note that mi is a negative number) 
while the intercept of the straight line portion when extended to t = 0 
gives the value of (ATC)0 / (1 -oc) from which ex may be easily coaputed. 
PC is found to be a number smaller than unity. One may obtain a better 
value of mi from approximate values. This is done by dividing AT. by 
(&T-)0/ (1 -CX) and adding OCe-*^. The resulting quantity is called T. 
The logarithm of Y is then plotted against t. The slope of the straight 
line through the data is mi. 

This procedure was applied to the data for the experiaent reported 
above. The new value of mi found was 2.163 x 10-3 compared to 2.160 x 10~3. 
In Figure 14 graphs are shown of both ATC vs t r.nd Y vs t on semilogarithaic 
paper. Note the excellent straight line found for the Y vs t plot.. It 
is of interest to note that the tera #e 111 becomes smaller than 0.1% 

Of, 
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Figure 14 

Comparison of Experimental Data with Theory 
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for a value of t of 315 seconds. The advantage of this las:: method of 
analyzing the data lay in the fact that all of the data nay be used anu 
especially the early values of A Tc which are actually the most accurately 
measured values. In addition the necessary condition that Ts is constant 
is more likely valid during the early part of the cooling curve. 

Methods of Computing Heat Capacity - In addition to the method outlined 
above for the computation of the heat capacity of the calorimeter from the 
cooling curve data there are several other methods which have been used 
in this research. 

A method much used in our early work was based on the equation (5): 

dt   HCS 

Where the quantities dTc/dt and qcs were obtained from the experimental 
data and then used to compute C. The values of dTc/dt were measured on 
a large plot of Tc vs t. From the value of A Tc for each value of the 
measured slope the value of qcs *as determined from the calibration curve. 
As would be expected, from the description of the data, the values of C 
computed by this method started out, at short times,with very large values 
and then as the internal heater effect became less important decreased until 
the values were of the correct order of magnitude. Unfortunately when the 
values did level off then the effect of the shield variation became important. 
Also the accuracy of measuring the slope quickly decreased as the Tc vs t 
line leveled off. The basic error made in this method of computation is the 
neglect of the term qjc which decreases slowly in magnitude as the calorimeter 
cools. Thus the value of qcs used in this computation ought to be the 
quantity qcs - qic which will be smaller in all cases than q^. 

This method was extensively used prior to the time that the experiments 
were made at constant shield temperature. When a cooling curve is taken with 

:     no control attempted on Ts one eventually reaches a practically constant 
rate of cooling and a constant difference between Tc and Ts. Therefore 
if qcs is computed from this difference an approximately constant value 
of C will be obtained. This value of C will usually be smaller than the 
true value. The reason is seen in equation (31) which is applicable to 

-•    the experimental situation here described. 

Another method is based on a computation of the amount of heat lost 
L    by the calorimeter during a particular time interval and then dividing 

this heat quantity by the corresponding temperature change of the calorimeter. 
- The ne amount of heat lost by the calorimeter was obtained by graphical 

integration of a qcs vs t graph. As might be expected this method gives 
high values of the heat capacity due to the fact that qjC has again been 
neglected. In the calculation made, the integration was carried from zero 
time to 704 seconds, then fiom G4 seconds to 784 seconds etc. for each 

— interval the mesn heat capacity was computed. The results of this computation 
for a run at 613°K are given in Table 3. 
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fable 3 

Integral Method of Computing Heat Capacity (013°K) 

AT C Cr,nrr. 

2.53°C 

2.35 

1.96 

1.76 

1.43 

1.29 

1.11 

0.837 

0.555 

Fne mean literature value of the heat capacity for this temperature 
is 42.7 calories per degree. In the fifth column of Table 3 some values 
of the heat capacity of calorimeter computed from values of qcs which have 
been approximately corrected for the heat lost by the internal heater. The 
value for the heat capacity of the internal heater was assumed to be 0.2 cal/deg. 
The rate of cooling of the internal heater was assumed to follow a simple 
exponential law. The correction was assumed to be insignificant after 
400 seconds. 

It is obvious that both the integral and differential methods require 
comr estimate of the magnitude of the heat stored by the internal heater and 
aiso an estimate as to how rapidly this heat is lost. If one waits for the 
cooling to continue for three to four hundred seconds then the influence of 
the internal heater is insignificant. However, after this interval the tempera- 
ture differences becor»e too small to measure with accuracy. 

Interv Total Heat 

0 - 764 sec 141.89 cal 

04 - 784 110.21 

136 - w 92.80 

i?6 - n 80.91 

236 - m 65.45 

26C - « 58.01 

312 - :» 49.01 

304 - r 36.27 

400 - n 23.02 

56.1 cal/deg 50.4 cal/deg 

46.9 43.0 

47.4 44.9 

45.0 44.0 

45.8 44.3 

45.0 43.7 

44.2 43.1 

43.3 42.6 

41.5 41.5 
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